NYSTEC]

New York State Technology Enterprise Corporation

Open Source Code Review Requirements
And
Related Expenses

New York State
Board of Elections

Submitted to:

New York State Board of Elections
40 Steuben Place, Albany NY 12207

November 28, 2007

Version 2

Table of Contents

1 THE TOPIC DEFIINED........cosetseestesstsesssrssesssssssssssesssssssssssesssssssssssenstssssssssesssssssssssensssassssssenssresransssnssross 1
2. THE SBOE PROPOSAL.......oeeeeieeneintenteeseeasessnssesssssssssssssssssssssssssssssssssassassssssssassassassassassassassassassass 1
3 DEFINITION OF “OPEN SOURUCE?” CODE ... oeeeeeeeeeeereeveeveereeveereereeseeseeseesesseesesseesessessassassassassass 1
4, DEFINITION OF “OPEN SOURCE” CODE DEVELOPMENT AND SUPPORTcccocviiviivecvecnennas 3
4.1 PRODUCT DEVELOPMENT . vvtuvuutiersienresnssasseeeessensessaeessass nnsssssssesssssansansssssssssiomionsesseessnsntiasseenessmnssssassssnnssnns 3
4.2 PRODUCT MAINTENANCE ..ceeuvueierreenrennssarseeeessmnsessaesssass nnsssssssesssssansansssiomssnsansasiossenssesntiasssensssmnssssansssnnssnns 3
43 PR ODUCT SUPPORT ettt it tesstt st sessesassssssessessessssssssessssses sennssseeseesensam o oeseesemnm s aesenses s me e s anseneeeemmaesenseeeeeann 3
5. SOURCE CODE TESTING PROCESS 3
5.1 IDEFTINITIONS .utiieituesnieseesssssssssssessessssssssissessessssssssessssseessssnnsssssstonsnnsenasssssnssrnans B Boessarsrneesressennnnnneiaen 3
52 EXPECTED VOLUME OF SOURCE CODE FOR VOTING SYSTEMS ... 0oivioteiteeietieite ettt etie s eeieeteeiaereeieeiaeirereenseneen 4
53 SOURCE CODE REVIEW PROUCESS - ... oottt oo e e et e e ettt vaarenaeeaes aan 4

5.3.1 Definition of Static COde ARALPSIS.............cciciiiiiiiiii it e et 4

5.3.2 NYSTEC recommendation jor source code Feview aPprOACH..........cccc.. vovveereoiiireeieeie e iirae et e e inrae s 5
6. ESTIMATED EXPENSES ssiioeneeneereerosREiat e i ieereetsetsstsetsstsstsstsstosniphbRaty 5

1. THE TOPIC DEFINED

During a recent Board of Elections commissioners meeting a proposal was submitted to provide
some relief for testing expenses for voting systems that are based on “Open Source” code. The
current estimate for complete certification testing of one voting system is approximately
$1,000,000 to be funded by the voting system vendors.

NYSTEC has been asked to provide a summary of what the source code testing would entail and
an estimate of the cost burden that could be placed on the state.

It is not the intent of this document to discuss the pros and cons of “Open Source” vs. proprietary
source code.

2. THE SBOE PROPOSAL

In order to provide some background information the following is NYSTEC’s summary
interpretation of the proposal.

The proposal provides for an “Open Source” voting system vendor to not incur any expenses
associated with source code testing and review They would however still be accountable for
expenses related to all other testing including functional, hardware, quality, security and usability
testing.

We believe the proposal is pretty clear in its intent since it

e Uses the “Open Source™ Initiative’s (OSI) accepted definition of “Open Source” to define
the criteria for being considered as an “Open Source” voting system, and

e It clearly indicates that the relief from expenses only includes the source code review
portion of testing and does not provide relief for any of the other testing.

3. DEFINITION OF “OPEN SOURCE” CODE

The following is an expanded definition of “Open Source” which hopefully adds some additional
points of clarification.

Taken from the “Open Source” Initiatives (OSI) web site:

Open source doesn't just mean access to the source code. The distribution terms of open-source
software must comply with the following criteria.

1. Free Redistribution
The license shall not restrict any party from selling or giving away the software as a
component of an aggregate software distribution containing programs from several
different sources. The license shall not require a royalty or other fee for such sale.

2. Source Code

The program must include source code, and must allow distribution in source code as
well as compiled form. Where some form of a product is not distributed with source
code, there must be a well-publicized means of obtaining the source code for no more
than a reasonable reproduction cost preferably, downloading via the Internet without
charge. The source code must be the preferred form m which a programmer would
modify the program. Deliberately obfuscated source code is not allowed. Intermediate
forms such as the output of a preprocessor or translator are not allowed.

3. Derived Works
The license must allow modifications and derived works, and must allow them to be
distributed under the same terms as the license of the oniginal software.

4. Integrity of The Author's Source Code
The license may restrict source-code from being distributed in modified form only if the
license allows the distribution of "patch files" with the source code for the purpose of
moditying the program at build time. The license must explicitly permit distribution of
software built from modified source code. The license may require derived works to carry
a different name or version number from the original software.

5. No Discrimination Against Persons or Groups
The license must not discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor
The license must not restrict anyone from making use of the program in a specific field of
endeavor. For example, it may not restrict the program from being used in a business, or
from being used for genetic research.

7. Distribution of License
The rights attached to the program must apply to all to whom the program is redistributed
without the need for execution of an additional license by those parties.

8. License Must Not Be Specific to a Product
The rights attached to the program must not depend on the program's being part of a
particular software distribution. If the program is extracted from that distribution and
used or distributed within the terms of the program's license, all parties to whom the
program is redistributed should have the same rights as those that are granted in
conjunction with the original software distribution.

9. License Must Not Restrict Other Software
The license must not place restrictions on other software that is distributed along with the
licensed software. For example, the license must not insist that all other programs
distributed on the same medium must be open-source software.

10. License Must Be Technology-Neutral
No provision of the license may be predicated on any individual technology or style of
interface.

NOTE: It is the intent of the “Open Source” community to develop quality software for free
distribution.

4. DEFINITION OF “QOPEN SOURCE” CODE DEVELOPMENT AND
SUPPORT

4.1 Product development

Open Source by definition is source code that is developed in an open and collaborative
environment. Open source is typically created by a community of individuals with the common
goal of developing a product to accomplishes a specific task. A good example of open source
development is the various versions of the Linux operating system which are developed by a
group of individuals and free to use by anyone.

4.2 Product maintenance

Maintenance for the given product is provided by the same group of individuals. Users of the
product are permitted and encouraged to provide input on problems (bugs) that are encountered.
They are also encouraged to provide formal requests for features or enhancements via a defined
process.

4.3 Product support

When a formal business provides financial support to develop a product they will follow the
“Open Source” rules for development and maintenance of a product but generate revenue by
providing a “fee for service” for user support. An example would be a business that funds the
development of a Linux operating system will provide the operating system for free but offer a
“fee for service” such as help desk support for users to call in for help.

Under the rules for “Open Source” anyone is permitted to use and modify a product but is not
permitted to resell or openly distribute the modified product. In addition, unless the
modifications to a product are done formally through the community of developers they are on
their own for support.

S. SOURCE CODE TESTING PROCESS

5.1 Definitions

First some definitions from a prior paper on source code testing that still apply even in the “Open
Source” arena.

Source code: A series of statements written in a human-readable computer programming
language. The series of statements, often consisting of several files or modules are then
converted to a computer executable format producing a computer program.

Code Inspection: A review to determine version, completeness, consistency, correctness,
modifiability, structure, traceability, modularity, and construction.

Code Examination: A review of source to insure it is unmodified, contains no embedded or
malicious code, contains no security vulnerabilities, and functionality to determine testing
requirement.

Full Source Code Review: A review for full compliance to the 2005 EAC VVSG. This includes
all standards dealing with formatting in Volume T Section 5.2.2 — 5.2.7 and Coding Conventions
in Volume II Section 5.4.2 as well as any other standards violations.

Types of Reviews: There will be two independent source code reviews performed.

e Security Review: The security review will implement code inspection and code
examination during the scope of this project. It will apply to all source code including
third party source code and COTS code that is supplied for compilation or generated by
another product.

e Functional Review: The functional review will implement a full source code review to
all source code supplied by the vendor. The functional review will also implement code
inspections and code examination as applied in this document for third —party software
and COTS products.

5.2 Expected volume of source code for voting systems

Using examples of source code that had been submitted by voting system vendors for
certification testing over the last year we were able to arrive at an estimate of the average size of
the source code effort. Based on a review of the previously provided source code:

e The typical/average voting system includes approximately 800,000 lines of code

e The typical/average EMS system includes approximately 650,000 lines of code.

5.3 Source code review process

The approach the voting system test labs use for source code review is completed against text

files that include the source code rather than against a running system. This approach is known
ag Statie Code Analucic

5.3.1 Definition of Static code analysis

Static code analysis 1s the analysis of computer software that 1s performed without actually
executing programs built from that software (analysis performed on executing programs is
known as dynamic analysis) In most cases the analysis is performed on some version of the
source code and in the other cases some form of the object code. The term is usually applied to
the analysis performed by an automated tool, with human analysis being called program
understanding or program comprehension.

The sophistication of the analysis performed by tools varies from those that only consider the
behavior of individual statements and declarations, to those that include the complete source
code of a program in their analysis. Uses of the information obtained from the analysis vary from
highlighting possible coding errors (e.g., the lint tool) to formal methods that mathematically
prove properties about a given program (e.g., its behavior matches that of its specification).

A growing commercial use of static analysis is in the verification of properties of sofiware used
in safety-critical computer systems and locating potentially vulnerable code.

5.3.2 NYSTEC recommendation for source code review approach

To provide the necessary source code review of “Open Source” voting system source code we
recommend a static code analysis as the preferred method to accomplish a full and effective
analysis of source code.

The static analysis includes two approaches.

e Use of automated tools to test coding practices such as indentation, commenting, variable
names, and many other good coding practices. Other tools can be utilized to evaluate
code for known coding vulnerabilities such as unused sections of code, bad branches
within the code, back doors, etc.

e Manual review of source code to evaluate the outcome of the automated tools analysis
and look for other coding vulnerabilities that tools can not uncover.

6. ESTIMATED EXPENSES

Based on a few studies such as the “State of California source code study” and other industry
standard guidelines the average experienced code reviewer can evaluate anywhere from 100 to
1000 lines of code per hour. The low end assumes a full manual review of source code. The
high end assumes a combination of manual review and the use of automated tools (as outlined
above).

Using these assumptions and also assuming multiple people would be working together on the
review it appears:

1. The review of the average voting system source code can be accomplished in
approximately 4 to 6 weeks, and

2. The average Flection Management System can be done in approximately 3 to 5 weeks.
NOTE: It is also assumed that this is one pass through the source code.

Using industry standard hourly rates for source code review the approximate cost per voting
system could range between $20,000 to $75,000 depending on the complexity of the source
code, the error rate (fatal flaws in the source code), and the amount of times the vendor is
allowed to fix flaws.

Since there is no way to accurately predict the actual time required we suggest that you assume
the high side for budgeting purposes.

