
New York State Technology Enterprise Corporation

Report to New York State
Board of Elections

For

NYSTEC Second Independent Review of
CIBER Source Code by Machine Security

Test Plan

Submitted to:

New York State Board of Elections
40 Steuben Place, Albany NY 12207

December 22, 2006
Version 1

Introduction:

NYSTEC has been engaged by the SBOE to facilitate an independent review of all security test

plans being developed by CIBER for Electronic Voting Machine certification. On November 15,

2006 NYSTEC and RABA provided a first review of CIBER’s individual machine security

source code test plans and made significant recommendations. This document provides

feedback on a review of the revised test plans, provided by CIBER on December 14, 2006, to

determine if the first set of recommendations were incorporated.

The updated plans were provided to RABA, who is acting as NYSTEC’s subcontractor for the

source code independent security review. Additional documents such as The CIBER Master

Test Plan, Master Security Test Plan and all the NYSTEC independent reviews of these

documents had also been provided to RABA for background information.

The attached document (Appendix A) is the unedited findings from RABA. NYSTEC has

reviewed the findings, discussed the process that RABA went through in their analysis and is

satisfied that the analysis was conducted by competent security professionals following generally

accepted security practices.

Executive Summary:

NYSTEC does not feel that the CIBER source code plans are sufficient enough to provide an

effective security review.

CIBER has not fully incorporated all of the prior RABA and NYSTEC recommendations as

were agreed. If the CIBER functional security test plans were more complete and the two plans

were linked together appropriately, only then might the source code test plans be considered

sufficient. We cannot view the current security source code test plans as complete or sufficient

until all recommendations have been implemented in both the functional security and source

code security plans and they are linked to each other and can act as one plan as requested.

NYSTEC and RABA are very willing to work with CIBER to improve these plans. However, as

RABA identified, the apparent lack of the proper security mindset is a significant concern.

Points of Clarification and Additional Observations:

· NYSTEC suggests that the authors of the CIBER source code security test plans work the

authors of the functional security test plans to provide consistency between the two sets

of plans. For example, in the Liberty test plans (source code and functional security)

there is no sharing of knowledge as far as threats and vulnerabilities to the Liberty

system. Areas where source code review is needed for certain requirements are linkage

points between the plans and the authors/testers must work closely together to join the

plans. This is true for all the machine plans.

· We agree with RABA that adding threats was a good idea. However, NYSTEC feels that

CIBER’s attempt at addressing known voting machine threats in the source code analysis

is a very weak start. Only the Diebold OS system contains relevant threat analysis. For

example the Liberty system has several other publicly documented vulnerabilities that are

not referenced in the source code test plans. Vulnerabilities referenced for all other

machines are not relevant or complete (see below).

o The inclusion of the recent Broadcom 802.11 vulnerability in each test plan is of

questionable value as any wireless or wired network connections on voting systems

must be removed per NYS requirements. Systems cannot even have the capability to

utilize wireless.

o Each test plan references as vulnerabilities the work done by Avi Rubin on the

Diebold AccuVote-TS (DRE). This is relevant for the Accuvote-TS DRE. However,

that system is not being tested here. Each plan simply contains a cut and past of

Rubin’s paper which describes the particular vulnerabilities of the Diebold

AccuVote-TS with code examples. The inclusion of these vulnerabilities may have

relevance to other machines, however, the author must focus on the root causes of the

vulnerabilities (improper use of cryptography, weak smartcard authentication etc..)

and threats and apply relevant analysis and testing to the particular voting machine in

question. As they are presented the whitepaper, excerpts provide very limited value.

o There are many publicly available resources for known voting machine

vulnerabilities, both generic and machine specific. The authors need to research

these, assess where particular machines may be vulnerable and include source code

checks to ensure that known vulnerabilities have been addressed.

· NYSTEC feels that paper ballot requirements should also be applied to the VVPAT

paper trails.

· As RABA correctly stated, the plans are not detailed enough, too subjective, and do not

specify how automated tools are used.

Recommendation:

NYSTEC strongly recommends that all of the findings and recommendations in this review be
utilized to develop and finalize a comprehensive and effective Source Code Security review
process for each voting system in scope.

Appendix A

December 21, 2006

Contract

TA0235-SC01 RABA Voting System Source Code Review

Author

Paul Franceus, paul@raba.com

RABA Technologies, LLC

8830 Stanford Blvd., Suite 205

Columbia, MD 21045

www.raba.com

iii
RABA TECHNOLOGIES PROPRIETARY

Contents

TEM PLATE TIPS.
..

ERROR! BOOKM ARK NOT DEFINED .

1

6.
EXECUTIVE SUMMARY

At the request of NYSTEC, RABA Technologies Innovative Solutions Cell (RiSC) has been

performing a review of the voting machine source code analysis conducted by Ciber, Inc. This

report is based on a revised copy of the test plans submitted to New York State after the first

round of comments by NYSTEC and RABA.

Overall, the test plans were improved over the last round. More detail was included and tests

were specific to the programming languages used in the machine. However, there was very little

detail about actual test procedures and there were still tests in some of the test plans that did not

apply to the type of machine being tested. (e.g. DRE specific tests appearing in an optical scan

machine test plan)

In the more conceptual and “difficult” tests, Ciber presented many caveats that “absolute proof”

or that “proving a negative” was challenging, or that a requirement was extensive. The truth is

that in general, software flaws can be extremely subtle and hard to find, even for the designer of

a system, thus the large number of software vulnerabilities that are discovered each year in all

sorts of software systems. It is not possible that all flaws in a system would be discovered

through source analysis. The best we can expect is a thorough best effort. This leads to the

concern that Ciber does not understand the true difficulty of the effort involved in this

undertaking.

We also noticed that Ciber spent some time justifying their approach to use only very basic tools

to perform this analysis, where more complex tools such as CodeSurfer or Doxygen would allow

them to gain an understanding about how the software really functions. Specific use of

automated tools like these should be called out explicitly in specific test cases.

We are also concerned that Ciber doesn’t have an adversarial mindset towards the code. They

seem to be looking for simple good programming practices and certain known vulnerabilities, as

opposed to approaching the system with the mindset of an attacker, who would creatively think

of how he might subvert the operation of a system. This adversarial mindset (the “white hat”

hacker) is critical to being able to discover vulnerabilities in a system.

No amount of analysis will be able to guarantee the security of any system. The source code tests

in this test plan are not sufficient, but if they are combined with actual system tests and real

attack scenarios, followed up by strict oversight of the vendors to make sure they fix the

problems and then continuously retest, we may be able to have some confidence that the voting

system is at least as secure as we can make it.

2

7.
OVERVIEW

RABA Technologies reviewed revised test plans for each of six voting machines under

evaluation for the State of New York. As in the previous case, the test plans were substantially

the same, now with language specific sections depending on the programming languages used

for each machine. Therefore, we have again organized our comments into a general section

applicable to all test plans, and then broken our comments down further by test number where

applicable.

8.
GENERAL COMMENTS

Overall, our impression is that the test plans are much improved over the previous version. Ciber

has done a reasonably good job in incorporating our previous comments. The incorporation of

previously discovered known security vulnerabilities into the test plan is an excellent idea,

especially since it has seemed that voting vendors have publicly claimed to have fixed flaws that

have been discovered not to be fixed years and many software versions later.

However, it seems that they spend a lot of time justifying their approach, such as the use of

“grep” or “vi” and other basic Unix tools for their testing. It seems that they do not intend on

making use of any of the tools we suggested, because as the plans are worded now, they simply

say they will investigate if they are applicable. No tool is specified in any individual test, which

makes us think that besides browsing a website or two, they have not made a large effort to

acquire and examine any of the tools. Many of these tools, such as Doxygen or Code Surfer,

would be extremely helpful in a tester understanding the functioning of an overall system, and

some cost nothing. Since Ciber has been doing these types of evaluations for some time, we

would expect that they would have developed specific tools themselves. It seems that they have

defined procedures but I guess we would have expected these to be more formalized.

The use of simple tools like “grep” is of concern to us not because they don’t work, but because

they can miss things. For example if there is extensive use of macro definitions that might

“wrap” memory allocation calls or if the product allocates a large block of memory from the

system and them manages that block itself in some way, then these simple tests would not locate

the code of interest. Clearly more in depth understanding of the programs under test will be

necessary. Understanding all of the header file contents as well as utility functions and macros

are needed for a thorough review of all the test cases. The sample test with memory deallocation

oversimplifies how these tests should be done

3

The more complex and “interesting” tests, such as such as looking for malware, or malware

vectors, or proper vote counting, or various security or crypto aspects of the voting software,

have been notated within the tests with many caveats that these tests are difficult or challenging.

We recognize that many of these tests are “challenging” to analyze even in the case of such

“simple” tests as locating buffer overflows, failure to properly free memory, or off by one errors.

It is not expected that source code analysis will be able to uncover all flaws in software. This is

especially true of simple things like looking at memory allocations and array indices. It really

will require intimate knowledge of the program and its operation and use of automatic tools may

help. Doing this job effectively is not an easy task. It can prove challenging to do well, even for

small systems using complex techniques like inter-process communication (IPC) and dynamic

memory management. The difficulty seems to scale exponentially with the size of the program

and number of files. We’re not sure of the points of the caveats. We are comfortable with the

task being difficult. It doesn’t diminish the need for the test to be done. If anything, the hard tests

are the ones where effort should be focused more intensely.

Any test case that is designed to test for flaws such as memory leaks should provide exact,

concise keystroke-level instructions on how a test operator can verify the flaw is not present. In

some cases judgement calls will have to be made, but as much as possible should be spelled out

exactly to insure that a rigorous processes is being followed. We feel as though the test plans did

not provide enough detail in the test cases designed to scan source code for various types of

flaws. We have included some examples of the kind of detail we might expect to see. The most

effective test is one that can be given to two different operators on two different days, and so

long as the inputs are the same, the results are the same as well. Why haven’t exact keystrokes

been identified?

For example, “Unix” command line utilities such as find/grep are mentioned but again no mention

is made of specific syntax. We suggest the test cases be amended to include specific cases that

employ these utilities to locate function calls of interest (COI). Here is an example command to

locate all references to the function call malloc() for a given source tree:

$ find ./ -name "*.c" -exec grep -n malloc '{}' \; -print

36: syslog(LOG_CRIT,"malloc() failed");

./flawfinder-1.26/test.c

98: buf2 = buf = malloc(filesize);

./magnacarta/distorm/linuxproj/main.c

23: unsigned char *result = {malloc(sizeof(unsigned char) * length)};

309: char *uni_str = malloc(sizeof(char) * (ustr.Length + 1));

326: char *uni_str = malloc(sizeof(char) * (ustr.Length + 1));

344: char *rstr = malloc(sizeof(char) * (str.Length + 1));

./memparser_1.0/file_read.c

465: dev_list *tmp = malloc(sizeof(dev_list));

4

607: if ((tmp = malloc(sizeof(*tmp))) == NULL) {

649: if ((tmp = malloc(sizeof(*tmp))) == NULL) {

1365: object_header *oheader = malloc(sizeof(object_header));

1384: object_type *otype = malloc(sizeof(object_type));

1460: NewFileName = malloc (strlen(file_name) + 20);

1637: NewFileName = malloc (strlen(file_name) + 10);

./memparser_1.0/memparser.c

247: buffer=malloc(len);

428: buffer=malloc(len);

./tgen/lib/3rd-party/pycrypto-2.0.1/src/block_template.c

64: L=malloc(sizeof(unsigned int)*c);

./tgen/lib/3rd-party/pycrypto-2.0.1/src/RC5.c

126: buffer = malloc(len);

156: buffer = malloc(len);

./tgen/lib/3rd-party/pycrypto-2.0.1/src/stream_template.c

We have also included an example of the use of FlawFinder. Here is an example of the type of

output FlawFinder produces:

Flawfinder version 1.26, (C) 2001-2004 David A. Wheeler.

Number of dangerous functions in C/C++ ruleset: 158

Examining cmd.cpp

Examining stdafx.cpp

cmd.cpp:41: [4] (buffer) lstrcat:

 Does not check for buffer overflows when concatenating to destination.

cmd.cpp:44: [3] (shell) CreateProcess:

 This causes a new process to execute and is difficult to use safely.

 Specify the application path in the first argument, NOT as part of the

 second, or embedded spaces could allow an attacker to force a different

 program to run.

cmd.cpp:44: [3] (shell) CreateProcess:

 This causes a new process to execute and is difficult to use safely.

 Specify the application path in the first argument, NOT as part of the

 second, or embedded spaces could allow an attacker to force a different

 program to run.

cmd.cpp:38: [2] (buffer) lstrcat:

 Does not check for buffer overflows when concatenating to destination.

 Risk is low because the source is a constant string.

cmd.cpp:39: [2] (buffer) lstrcat:

 Does not check for buffer overflows when concatenating to destination.

 Risk is low because the source is a constant string.

cmd.cpp:40: [2] (buffer) lstrcat:

 Does not check for buffer overflows when concatenating to destination.

 Risk is low because the source is a constant string.

cmd.cpp:42: [1] (buffer) lstrcat:

 Does not check for buffer overflows when concatenating to destination.

 Risk is low because the source is a constant character.

5

Hits = 7

Lines analyzed = 66 in 0.54 seconds (1692 lines/second)

Physical Source Lines of Code (SLOC) = 56

Hits@level = [0] 0 [1] 1 [2] 3 [3] 2 [4] 1 [5] 0

Hits@level+ = [0+] 7 [1+] 7 [2+] 6 [3+] 3 [4+] 1 [5+] 0

Hits/KSLOC@level+ = [0+] 125 [1+] 125 [2+] 107.143 [3+] 53.5714 [4+] 17.8571 [5+] 0

Minimum risk level = 1

Not every hit is necessarily a security vulnerability.

There may be other security vulnerabilities; review your code!

The most effective test plan describes, in excruciating detail, the target of evaluation (TOE). It’s

our understanding that the Ciber is only performing a source code review and in-depth

descriptions of the end platform where the voting systems will operate may in fact be out of

scope but more detail in the introduction should be given to describing the source code itself.

What version number(s) (if any) has the vendor given the code? Will the source for all elements

be obtained? How about an appendix that lists the names of all files tested and a MD5 hash code

for each file? This appendix can then be stripped out later if customer or vendor wishes to

distribute the test guide.

6

9.
COMMENTS ORGANIZED BY TEST CASE

This section contains mostly raw comments organized by test case since they generally apply to

the entire body of test plans.

9.1.1
Test 1.10

Validate that the log is opened with an exclusive lock. Make sure the log writes can't conflict if

there are multiple threads/process which write to the audit log.

9.1.2
Test 1.21

This should be rewritten to clarify which "memory object" changes need to be logged. This is

too vague and it is not possible to log every change in memory because this happens

continuously.

9.1.3
Test 1.29

This is probably more accurately written as “one ballot/one vote” since there is no way for the

voting system to tie the ballot to the voter.

9.1.4
Tests 1.31, 1.33

Why are these tests included in machines that do not have paper ballots? The documents should

be reviewed and tests that do not apply to a specific machine removed.

9.1.5
Tests 1.34, 1.35, 1.36, 1.38, 1.39, 1.66

Remove the Caveat.

9.1.6
Test 1.35

Change word "case" to "cast."

9.1.7
Test 1.37, 1.38, 6.22

DRE tests are not applicable to paper ballot systems.

9.1.8
Test 1.38

Step 1 is to perform test 1.32. There is no test 1.32.

9.1.9
Test 1.48, 1.49, 2.1, 6:49

7

Tests reference test 1.38. 1.38 references test 1.32, which does not exist in these documents.

9.1.10
Test 3.15

Ensure no functions in the source code modify the redundant copy of the vote to cause a

mismatch.

Should this add a requirement that the storage is not lost with power outage/failure of the

system?

8

9.1.11
Test 4.1

 Ensure digital signatures are signed by a valid Certificate Authority.

9.1.12
Test 5.2

9.1.12.1 C/C++

Either break these up separately or mention new/delete as well as malloc/calloc/free. Need to

verify the no memory allocation is wrapped in such a way that it is not checked (MACRO or

memory allocation function wrapper).

9.1.13
Test 5.3

Off-by-One Error are not just in loops they can also be in string lengths, and arguments to

string/memory functions. This test needs to cover all types of errors not just loops counters.

9.1.14
Test 5.7

9.1.14.1 C/C++

Step 3 says "intensive formal code inspection ... might be beyond the scope of this project". Isn’t

the point of these tests an intensive formal code inspection?

9.1.15
Test 5.12

Ensure all free/delete calls are used on valid allocated memory (malloc/new) and not variables

placed on the stack (statically allocated memory).

9.1.16
Test 5:13

 The procedures say that the test isn't valud for C programs. But it references malloc and

free? If this isn't used for C programs, what test procedure is? Malloc/Free bad programming

style in C++?

9.1.17
Test 5:16

Shouldnít this also include delete for C++ compatibility?

9.1.18
Test 5.17

Integer range checking needs to be done when performing calculations to ensure that the

resulting value can't go outside the range for the variable type receiving the value.

9.1.19
Test 5.26, 5.27

9

The tests that explicitly deal with file naming (5.26-7) do not address the issue of a properly

named file being automatically run without any user verification. Without positive user action,

properly named files could potentially replace valid voting system software or ballot formats (

6.13-4, 1.66).

9.1.20
Test 5.29

This issue could be viewed as being addressed by 5.29. However 5.29 is very broad in scope

and not as precisely defined as other tests. If the voting system software uses features of the

COTS opererating system (e.g. "Autorun"), there may not be explicit references in the source

code that control the installation/replacement of ballot format (or other files) on the voting

system. Regardless, this is an area that needs to be addressed

9.1.21
Test 5.34

Test 5.34 seems to addresses logic errors, but is very vague compared to the other tests looking

at memory usage, string copying and integer sizing. What types of logic errors will be looked

for? the proper use of '&' vs '&&', '=' vs '==', proper construction of If clauses?

9.1.22
Test 6.9

Tampering may not be able to be detected by the code itself. What about hardware tampering?

Will these be logged? Memory card removal, etc. You also need physical and electronic security.

9.1.23
Test 6.13

This needs to be checked by verifying the loaded firmware is not tampered with and maintaining

the physical security of the system.

9.1.24
Test 6.55

9.1.24.1 Step 2

Software can't validate itself! Once it is compromised it can be made to report anything at all. If

the machine itself is compromised you can't trust any results that it reports.

9.1.25
Test 6.77

What other software will be running on a voting machine? Should this be allowed?

10.
COMMENTS SPECIFIC TO EACH VOTING MACHINE

10

This section contains comments that apply only to specific test plans. Other comments apply

generically across all the plans.

10.1
Avante Vote-Trakker

No specific machine comments for this system.

10.2
Diebold AccuVote-OS

No specific machine comments for this system.

10.3
ES&S M-100

Test 7.4: The QNX operating system would provide wireless networking capabilities, not the

DRE system. While it makes for a thorough review to check the DRE source code for references

to wireless networking this test probably doesn’t apply

Does Broadcom vulnerability mentioned in regression security test #1 actually apply to this

system? Isn’t this a QNX operating system

11

10.4
Liberty Vote

10.4.1
Test 1.33

Paper based ballot secrecy? This is a DRE system therefore does this test really apply?

10.4.2
Test6.19, 6.22, 6:23

Do these apply to Liberty? This is a DRE machine.

10.5
Sequoia Advantage

The lack of specific C# tests this late in the process is alarming. Most of the system is C#-based.

10.6
Sequoia Optech Insight

10.6.1
Test 5.2

10.6.1.1 Z-80 Asm/Visual Basic

You should not assume there is no dynamic memory allocation in
the test plan.

10.6.2
Test 5.8

Since the Optech can't chain exceptions eliminate this test from the Optech Insight test plan.

10.6.3
Test 5:11, 5:12, 5:13, 5:14, 5:15, 5:16

"It is not believed that this requirement applies to PowerBuilder". Why? PowerBuilder handles

its own memory management, but that needs to be stated. It is stated in an earlier test case, but

needs to be reiterated. Same for the Z-80 ASM section. The fact that the z-80 does not allow for

dynamic memory allocation needs to be stated in every test case that utilizes dynamic memory.

10.6.4
Test 5:27, 5:28, 5:31, 5:32

Why is these tests not apply to the Z-80?

10.6.5
Test 1:29, 1:30, 1:34, 1:35, 1:36, 1:7, 1:38, 1:39

References DRE systems, This is a Optical Vote Counting system.

10.6.6
Test 6:9

Will removing a memory card crash the system as the majority of the OS runs on this card?

12

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

