
New York State Technology Enterprise Corporation

Report to New York State
Board of Elections

For

NYSTEC Independent Review of CIBER
Source Code by Machine Security Test Plan

Submitted to:

New York State Board of Elections
40 Steuben Place, Albany NY 12207

November 15, 2006
Version 1

Introduction:

NYSTEC has been engaged by the SBOE to facilitate an independent review of security test

plans being developed by CIBER for Electronic Voting Machine security certification. NYSTEC

received copies of the source code taken from the voting machines scheduled for testing and a

copy of the source code test procedures from CIBER on 11/9/06. These items have been

provided to RABA, who is acting as NYSTEC’s subcontractor for the source code independent

review. The CIBER Master Test Plan, Master Security Test Plan and all the NYSTEC

independent reviews of these documents were also provided to RABA for background

information.

The attached document is the unedited findings from RABA. NYSTEC has reviewed the

findings, discussed the process that RABA went through in their analysis and is satisfied that the

analysis was conducted by competent security professionals following generally accepted

security practices.

Recommendation:

It is NYSTEC’s recommendation that all of the findings and recommendations in Appendix A to

this document be utilized to develop and finalize a comprehensive and effective Source Code

review process for each voting system in scope.

Appendix A

Electronic Voting Machine Test Plan
Review for NYSTEC

November15, 2006

Contract

TA0235-SC01 RABA Voting System Source Code Review

Author

Paul Franceus, paul@raba.com, 410-499-7280

RABA Technologies, LLC

8830 Stanford Blvd., Suite 205

Columbia, MD 21045

www.raba.com

Publication/Revision History

Release Date

1 version November 15, 2006st

1 draft November 14, 2006st

mailto:paul@raba.com

Contents

OVERVIEW .
..

3

EXECUTIVE SUM M ARY.
...

2

GENERAL COM M ENTS.
..

4

COM M ENTS ORGANIZED BY TEST CASE....
...

8

1

1.
EXECUTIVE SUMMARY

At the request of NYSTEC, RABA Technologies Innovative Solutions Cell (RiSC) performed a

review of the test plans provided by Ciber Inc. as the basis for a source code analysis of the 5

electronic voting systems being considered for purchase by the State of NY. We reviewed these

test plans for completeness and level of detail, as well as their ability to detect potential security

problems in the voting system.

The findings of our review are that these tests are incomplete and lacking in detail. They have

not been customized to the individual voting machines and so considerable effort will need to be

undertaken by Ciber to make these tests complete and useful.

The tests also show a lack of sophistication in testing methodology, relying on human inspection

to attempt to find flaws in systems that are not easy to find sometimes even by automated means.

Manual verification of software is time-consuming, expensive, and prone to error. Automated

tools should be used to perform these analyses whenever they are available.

In addition, the tests seem to focus on simple common good programming practice, which, while

useful in ensuring that software is robust, does nothing to address functionality, security features

of the voting systems, how well they have been implemented or whether they are resistant to

attack by a sophisticated adversary. Security comes from a total system implementation of

voting and vote tallying devices. This system must operate in a consistent and predictable

manner, even when operated in a manner other than intended by the developer. It is not

sufficient that common programming errors are absent from a voting system. Each security

feature must be implemented correctly and function as designed. Security should provide

multiple layers of protection so that the system does not depend on any single point of failure.

2.
OVERVIEW

RABA RiSC reviewed test plans for each of 5 different voting machines: Diebold AccuVote OS,

ES&S M-100 & Automark, Liberty Vote, Sequoia Optech Insight, Sequoia Advantage L. The 5

test plans were substantially the same, in fact it appears that they were simply copied from each

other with global search and replace to change the name of the machine referenced in the plan.

Therefore, we have organized our comments into a general section applicable to all test plans,

and then broken our comments down by test number.

2

3.
GENERAL COMMENTS

The test plans appear to be simply copies of each other with minor global replacement changes.

As such, they do not take into account potential differences between the voting machines. For

example, there are machines that are based on Windows CE (i.e. Diebold) and others on QNX

(i.e. ES&S). These operating systems have different APIs and file system structures. To cite one

area of concern (the proper handling of temporary files) Unix and Windows temporary

directories and system calls to create a temporary file are very different. The test plans should

reflect these differences accordingly. There is a big difference between code written in the

different programming languages of interest (C, C++, Assembly and C#). The tests should be

specified understanding those differences. For example, in C++ you generally use the “new” and

“delete” keywords to allocate memory, while in C malloc(), free(), or equivalent Windows

library function calls are typically used. One would not want to call free() after new() in C++, as

C++ retains some of the mechanisms used in C, but the test plans should be written in a manner

appropriate to the language used to implement the system under investigation. C# has built-in

garbage collection, so errors like multiple “frees” of a memory area are not an issue, but tests are

still present in the test plans for C#. Also, in the case of C#, references in the test plan to

characters or character arrays should be specified in terms of String objects as well.

It is important to validate the build environment of the systems to make sure that proper security

features such as buffer overflow protection is enabled when the code is built. Some of these

protections are standard features of vendor build environments but it must be determined that

they are enabled when the code is built. It is also important to verify that any program of interest

compiles cleanly, without any warnings.

The test plans don’t explicitly list the applicable requirements from the NY State Voting

Security Requirements Test Matrix (NYSVSRTM).

It is our considered opinion that manual examination of the code is not a valid method for

performing the tests outlined in these test plans. It is not a simple matter of scanning a single

function visually to determine flow of execution and memory access patterns. You need to do a

context sensitive analysis over multiple basic blocks (blocks of statements ending in a control

flow statement) of the program executable to track the values in all registers and variables in

scope to make sure no return values from calls to malloc-type functions could be in scope when

the memory manipulation function is called. The state which occurs which causes a heap-based

vulnerability often will most likely not be local to the block of code which calls malloc to

reserve heap space or manipulates variables on the heap. What you need to look for is

combinations of statements that lead to a vulnerable program state, depending on the execution

path. As such, the examples cited are generally illustrative, but quite trivial. One should have a

much deeper analysis of these issues to prevent memory-based vulnerabilities.

3

BoundsChecker http://www.compuware.com/products/devpartner/visualc.htm

MemoryProfile

r

http://memprofiler.com

CodeSurfer http://www.grammatech.com/products/codesurfer/index.html

Therefore we recommend that Ciber look into using automated tools to perform this analysis.

Some examples of these types of tools are listed below:

None of the tests address logic errors even though logic errors are implicit in the NYSVSRTM

(e.g. Req # 1.2 and 1.3). Is it possible to determine if conditional statements implement valid

logic?

None of these tests address NTSVSRTM requirements 1.26-1.32 and 1.36-1.43

There are tests that address the size of string and integer data, but nothing that addresses the

representation and ordering of data. If a bit field is used to represent a voter's choices, and the

order of the ballot on the recording machine has John Adams first and George Washington

second, and the tabulator has George Washington first and John Adams second, then the votes

will be improperly tallied.

System and environment issues are not addressed by the test plan. The configuration of the entire

voting system is important in the validation of these machines. Will this be addressed in a

different part of this evaluation? If not, attention needs to be paid here to these issues as well.

For example:

It is important to assure that there are no drivers or software loaded on a voting system that is not

absolutely necessary, such as Wireless or IR drivers, other utility software, etc.

It is important to lock down the machine's configuration: i.e. make sure that autorun is disabled

for the insertion of external devices, drivers are not installed for ports (like USB or PS2

keyboard ports) that will not be used in the operational system.

As we've seen in other evalutaions, dialup is not thought of as 'internet' so is ignored as an attack

vector and lack of 'internet' connectivity is used as a rationale for not requiring security patches,

firewalls, etc.

http://www.compuware.com/products/devpartner/visualc.htm
http://memprofiler.com
http://www.grammatech.com/products/codesurfer/index.html

4

These tests only address the voting machines. Are there plans to address the tabulators as well?

Especially important to address this as an entire system.

Where is the test environment described? We should be able to read exactly how the lab in

which the product will be evaluated is setup. It should be clear how the source code is to be laid

out on disk and what commands are being used to perform the testing. What type of logs will be

kept to ensure that the tests were actually performed?

Testing plans should include step by step instructions. Not "search for allocation and

deallocation". We would like to see how the test is actually going to be done.

Functional ares which should be tested should include:

Check for hard coded encryption key in source or assembly code.

Check for unencrypted keys in memory while program is running in a debugger

Check for use of default keys in setting up ssh sessions.

Check for use of deprecated security modes (i.e. weak 54-bit export grade encryption) in

SSL/TLS session.

Check libraries linked into executable against known public vulnerabilities (e.g. are you ever

using a version of a library function that has a known vulnerability, what is your plan to patch

and upgrade software when vulnerabilities are found, how does one prevent patching by

unauthorized administrators?).

Check that SHA256 hash of executable from compilation correspond with provided version in

hardware. Explain any discrepancy

Can the code on a machine be validated prior to use, and validated between uses so that

unauthorized insertion of code onto a unit can be detected?

Check server vote-tally application to make sure if a common program used (such as MS-Access

or MySQL) that it is configured correctly for proper security (no default passwords used, no

passwords stored or transmitted in the clear either on the client or between client or server).

Ensure data store is encrypted so an unauthorized user who has gained administrative level

access to the server cannot simply alter the file (e.g. Diebold GEMS scenario opening up the

MS-Access file and editing by hand should not be possible). As mentioned in a later test case,

format string vulnerabilities should not be present in the system.

Make sure when you pass data to a library you aren’t getting more functionality than you assume

is there – i.e. handling of esoteric format types of COM or SOAP objects or MIME types in text

payloads which are not well explored in the field and may contain unknown vulnerabilities.

Configuration of the OS itself (patch level, security features, etc) is important question – not just

the app that runs on top of the OS. This is not really addressed in any of this, unless we assume

5

Ciber will look at the assembly and source for the OS in question as well, which I imagine would

be very time consuming – how do we know what the function is of all processes running on the

machine and if malicious code is not present in the OS itself? This is a rhetorical question on

some levels, but still an important consideration, e.g. if there is a root kit somehow installed on

the box, how does that affect the operation of the app?

1.
COMMENTS ORGANIZED BY TEST CASE

Test Case 1: Unbounded String Copies

Just checking to see if strncpy is used instead of strcpy is not sufficient, if the wrong size is used
for strncpy it could still result in an overflow

Ensure n is length of destination and not source. Otherwise an overwrite of destination can

occur.

C# does not utilize these calls; it provides other mechanisms for string copy and manipulation.

If there are any copy or manipulation errors the common language runtime (CLR) will throw

exceptions, there won’t be stack overflows.

The steps are invalid for assembly code because the strcpy family of functions is inlined in

assembly and not function calls as in "C". It will be more difficult to verify then looking for str

functions.

Test Case 2: Memory Leak Prevention

In the Diebold test plan the steps are copied from test case 1.

Must also ensure that memory is freed if exceptions or errors occur.

In C#, the memory allocation model is quite different than the one specified in the test. What test

makes sense specifically for C#? How about using a memory profiler?

For QNX based voting machines: QNX has development tools available for their platform. It

would be a good idea to run the source code through their toolset and see if there are memory

leaks – some functionality is mentioned on their website. I believe there is a 30-day free trial

download of their development suite. Ciber should avail itself of this if available.

Test Case 3: Off By One Errors

6

Off by one errors can also occur when memory allocation is too small, typically because of

forgetting about the null termination of a string or something like that.

In the case of assembly, there are no for loops, so test should reflect the equivalent assembly

patterns of interest.

Test Case 4: Null Termination Errors

In C#, a string object in C# is automatically initialized to null if not explicitly done so by the

developer. In addition, the null terminating character is automatically added.

Test Case 5: Successful Memory Allocation

There is also a case where an integer parameter is used as the size of something to be created and

the system does not check for overly large sizes which can result in a creation of a null object

For C#, this is not a useful test. In the event that a programmer is performing some type of string

concatenation, the string sizes will automatically be increased. Shouldn’t this test mention

exception handling instead? Also shouldn’t this test case mention the StringBuilder class?

Test Case 6: Buffer Overflows

For C#: there really isn’t a concept of a buffer overflow vulnerability. Shouldn’t the test

procedure check IF a InternalBufferOverflow or Overflow exception is raised that it

is handled properly? Also if exceptions handlers are included, the test procedure should verify

for the presence of the checked{ } construct

Test Case 7: Exception Handling

Ansi C does not provide exceptions natively. “signal” is a Unix system call only. These tests

need to be platform dependent.

You will also need to look into the libraries used for this and make sure they are written with

proper security in mind. The term “source code” should refer to all source and libraries. Where

source code for libraries is not available (e.g. is QNX open source?), the compiled version will

have to be analyzed. I am concerned that without the use of automated tools, this task will be

man-labor prohibitive and prone to error

7

It is important to make sure that not only exceptions are being caught, but that there are no

vulnerabilities in the exception handler itself.

Considering how old the Sequoia Optech Insight is, does it even provide an exception handling

mechanism?

Test Case 9: Proper Initialization

This case fails to handle the fact that the compiler will often automatically initialize a local

function variable for you. In addition, while pointers to objects can be null, this case should

ensure that exception handling is put in place for any function or method that handles objects.

Initialize variables. ints to 0, pointer to null, etc.

For 9, 11, 12 and 16: these don’t seem to apply in the case of assembly. Again these tests need to

be specific to the type of machine and development language.

Test Case 10: Checking Return Values

This should be expanded past memory allocation and deallocation. Check return values for any

function that could cause errors or exceptions if it fails. i.e.: fopen, fclose, especially if votes

are stored on external media: flash, smart cards, etc.

Test Case 11: Referencing Deallocated Memory

You need to do a context sensitive analysis over multiple basic blocks (blocks of instructions

ending in a control flow statement) of the program executable to track the values in all registers

and variables in scope to make sure no return values from calls to malloc-type functions could be

in scope when the memory manipulation functions are called. The state which occurs which

causes a heap-based vulnerability often will not be local to the block of code which mallocs

space on or manipulates variables on the heap. What you need to look for is combinations of

statements that lead to a vulnerable program state, depending on the execution path. As such,

the example cited is illustrative, but quite trivial. One should have a much deeper analysis of

these issues to prevent heap-based vulnerabilities.

Test Case 12: Multiple Memory Deallocations

8

Also need to check for the use of realloc in these cases.

Test Case 13: Memory Management

Include calloc and realloc for delete calls.

 Ensure pointers to memory allocated are set to NULL after free.

 It might be useful to zero out memory before freeing it to prevent stale data from accidentally

being reused.

Test Case 14: Scalars and Arrays

We’re not sure these tests are valid in the case of C# or Z80 Assembly

Test Case 15: Improper use of Memory Allocation

This test case is valid but misguided. It fails to mention exception handling for null objects after

a call to new, strings will automatically be initialized to NULL when created. Objects are

deleted, not freed. Step 4 in this procedure, it’s a sentence fragment, where is the rest?

Test Case 16: Test Writing Memory that has already been freed

Trace pointer from alloc to free. Ensure the pointer wasn't copied. This copy could be used to
write to the memory once it was freed. This will be very difficult to do manually.

We don’t expect to see this case in a C# system. I suppose if you try to set a variable or invoke a
method of an object that has already been freed you will get an exception but the test case does
not mention exception handling.

Test Case 17: Range Checking for an integer type

What is the expected range? If this is undocumented by the author how does the tester know

what it is supposed to be?

This test case is ambiguous. What is meant by expected range? The system defined range of

values a atomic data type can take on OR that a developer should have defined a range of values

for each type that are valid to the application at that point in time?

9

Make sure there can be no access to minrange and maxrange via stack or heap based exploits.

Should be constants and the program should check to make sure that table has not been changed

in memory.

Need to verify that there are no type mismatch problems in the code that would cause problems

with signed/unsignedness.

Test Case 18 Integer Promotions and 19 Integer Conversions

These tests appear to test the same thing.

Step 2 should read Insure that the computation cannot result in an incorrect result. You will not
necessarily know the input values looking at the source code.

It might be better written to do something like the following:

Identify ALL arithmetic operations in code except those manipulating counter values

Indentify in developer comments and conditional evaluations after said operation if developer
has indicated what the expected range of values is. For those cases where this is not done record
them and fail the test.

Test Case 20: Integer overflow

In the case of a C# based system, an integer overflow should be covered by an exception, the test

should check for exception handling. I would also suggest monitoring the build process as well

to check for occurrences of the CS0029 compiler error. You should at least be able to identify all

atomic cast operations with a simple regular expression.

Should just say it does not allow the overflow. Why would you allow the overflow and just

warn about it with error detection?

Test Case 22: Truncation errors

For C# systems: The references to “truncation errors” are probably referring to improper
truncation on the part of the developer. The compiler should be savvy enough to catch a number
of these. It would be useful to again monitor the build procedure for occurrences of the CS0029
error code.

10

Test Case 23: All Input Sources are Identified

Identify environment variables and system properties as well.

How and where will votes and ballots be stored?

Test Case 24: All Input Data is Sanitized

Does not explicitly state user input (Write-in vote) as an input.

Instead of black-listing certain 'bad' characters, valid characters should be white-listed.

Need to address the issue of data being safe at one stage, but not another: e.g. do write-ins allow
single quotes for names like O'Brien? Single quotes can be bad when it comes time for storing
the write-in results in a database.

Communications with tabulators need to be sanitized also, in case a connection is established
with a rogue tabulator (e.g. via dialup to the wrong/misdirected phone number).

When sanitizing values what are the expected ranges? Documentation provided by author? How
is the tester supposed to know what is expected?

If inputs are string or integer based then the first three bullets should be protected by exceptions.
The fourth bullet is valid but depends on the developer indicating in documentation or code
comments what an acceptable value for a configuration input is.

Test Case 25: Race Conditions

All shared objects should be protected in some way. This may involve critical sections,
semaphores, etc.

The likelihood that a tester will catch all synchronization errors is extremely low. It’s almost
impossible for a tester to identify all synchronization issues via the human eye. This test
absolutely must use some type of source code scanning mechanism like BoundsChecker, which
claims to be able to detect deadlock issues.

Test Case 26: Temporary File Open

This problem is much more prevalent on UNIX platforms. Isn’t the mkstemp() system call

U N I X / L I N U X o n l y ? T h i s s h o u l d r e f e r e n c e t h e C # c a l l :

11

System.IO.Path.GetTempFileName(), or whatever is appropriate for the given

platform

Test Case 27: Filename Trusting

Firmware updates should not be permitted solely on the proper naming of a file on a memory
card - or does this fall under #29? Firmware updates should require explicit administrator action
(e.g. password)

The steps do not address the requirement. The requirement is to properly validate files name so
symbolic links can't be abused. The test needs to verify that the code will not follow symbolic
links or directory traversal attacks.

Test Case 28: Format String Vulnerabilities

Unfortunately C# .NET is still vulnerable to this problem. This test should really be rewritten to

search for C# style format strings where formatting characters are replaced with {X} where X

indicates the position of the argument. The test should ensure that any place a string is to be

written somewhere or drawn on-screen, the StringBuilder.AppendFormat() method is

called.

Test Case 29: Malicious Code

Does "voting system's software” mean just the custom application code to handle the voting
process or does it include the underlying OS as well?

Ensure the password is strong and not stored in plain text in either memory or anywhere on the

system. If using a Unix/windows system, ensure the software is fully patched with the most

current vendor patches.

 Define "strong" passwords.

This is way too open ended because there is no universally agreed upon definition for the term

“malicious code”.

Might be more explicit. Does the software check for bad selection of passwords (i.e. does it do

an entropy check on the password to make sure it is random, what is the minimum entropy

allowed per byte of key, does it allow the password to be changed to the same value it has had

recently, does it monitor how quickly one attempts to log in, does it prevent you from choosing

12

common dictionary words, does it store the passwords in the clear or in a non encrypted form so

password dictionaries can be used against it…)

Also, need to check the physical security of the device. How long does it take to pick or jimmy a

lock, is the case tamper proof with visible indications of tamper attempts? Are all keys different,

what are the physical security protocols in place for access to keys and smartcards, etc?

How does the software respond to the insertion of a smart card? Does it ignore smart cards

unless a password is provided? How does one validate the possessor of a smart card is

authorized to have it? One should have at least a password for the unit and a password for the

card in question.

This requirement acts like the voting machine is a normal interactive multi-user system, when it

looks a lot more like an embedded system. Do these requirements really make sense in that sort

of environment?

Test Case 30: Unbounded Arrays

Should this just be bound to code? What about results? Any overwriting of memory, executable
instructions or data could affect the validity of the vote tally.

The rationale mentions specific requirements that are covered under other tests (specifically
buffer overflow tests). Those tests should also cover this requirement as well.

Test Case 31: Secure executables

need to verify that source code matches the binary installed on the voting machine

title doesn't match objective - proper crypto implementation not the same as verifying the
integrity of executables change title and add new test for executable integrity

Need to get the CMVP software from a trusted source (e.g. USG) and compare it (hash, diff) to
the supplied versions to ensure it has not been altered. Moreover, an important category of test
is to determine if it is configured and used correctly, It is no good, say, to have an SSL session
using cryptographic keys if those keys are stored unencrypted in memory or on disk, or are set to
default easy to guess values. E.g. setting up a default SSL connection using a default key that is
sent in an unencrypted PPP header would be bad.

Test Case 34: Programmed as Designed

13

This is a tough test to satisfy and cannot be done with a simple source code analysis. This
involves identifying functional requirements (FR) from the vendor and generating test
procedures designed to satisfy these functional requirements. Only then can this requirement be
satisfied. It is probably the largest and most difficult of the test cases.

Also, it is not sufficient to simply say that a feature works as designed to meet a requirement. It
is important how well that feature is implemented. For example, make sure that encryption keys
are not hard-coded in source code, or that zero tests on voting machines properly checks for the
presence of negative values in the totals.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	_Toc25224429
	_Toc25224428

	Page 10
	_Toc25224430

	Page 11
	Page 12
	Page 13
	_Toc25224431

	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21

